
Carbon Nanotube Gas Sensor Using Neural Networks 
 
Introduction:  The need to identify the presence and quantify the concentrations of gases and 
vapors is ubiquitous in NASA missions and societal applications. Sensors for air quality 
monitoring in crew cabins and ISS have been actively under development (Ref. 1).  In particular, 
measuring the concentration of CO2 and NH3 is important because high concentrations of these 
gases pose a risk to ISS crew health.  Detection of fuel and oxidant leaks in crew vehicles is 
critical for ensuring mission safety. Accurate gas and vapor concentrations can be measured, but 
this typically requires bulky and expensive instrumentation. Recently, inexpensive sensors with 
low power demands have been fabricated for use on the International Space Station (ISS).     
Carbon Nanotube (CNT) based chemical sensors are one type of these sensors.  CNT sensors 
meet the requirements for low cost and ease of fabrication for deployment on the ISS.  However, 
converting the measured signal from the sensors to human readable indicators of atmospheric air 
quality and safety is challenging.  This is because it is difficult to develop an analytical model 
that maps the CNT sensor output signal to gas concentration.  Training a neural network on CNT 
sensor data to predict gas concentration is more effective than developing an analytic approach to 
calculate the concentration from the same data set.  With this in mind a neural network was 
created to tackle this challenge of converting the measured signal into CO2 and NH3 
concentration values. 
 
Language and API: The neural network was built in Python using Keras with TensorFlow as a 
backend, and the data to train the network was acquired from a CNT sensor developed by 
researchers at NASA Ames Research Center.  Data preprocessing steps were conducted using 
Pandas and Sci-Kit Learn.  
 
CNT Sensor Data: The CNT sensors studied detect gas concentration by measuring the change 
in resistance of the CNT material when different gases are present.  Resistance changes are 
caused by gas adsorbing and desorbing from the surface of the CNTs.  In a controlled laboratory 
environment, the CNT sensor was alternately exposed to CO2 and NH3 gas.  Approximately 14 
hours of gas exposure data from a 16-channel CNT sensor, along with the measured ambient 
pressure and relative humidity, were used to train the neural network. The logarithm of the 
exponential weighted moving average (ewm) of the data was concatenated with the raw 16-
channel data, creating a data frame consisting of 34 columns.  Each row in the data frame 
represented a five second data collection interval. The data was then transformed to form 5-
minute running windows, and the average CO2 and NH3 gas concentration for each window was 
calculated from the measured values at each time step within a window (Figure 1).  Raw and 
processed data were scaled separately using Scikit-Learn’s RobustScaler.  Through scaling the 
data from all source are centered and set to the same standard thus improving the predictive 
performance and convergence of the neural network model.   The data was split into training 
(70%) and test (30%) sets. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A plot of data after the processing steps and before the creation of the sliding window.  
The blue box rectangular box is to represent the running window.  The dimensions of the box are 
not to scale. 
 
 
Neural Network Architecture: The model chosen for the neural network architecture is based 
on two GRU (gated recurrent unit) neural network cells (Figure 2).  One cell received scaled raw 
signal data, along with the pressure and humidity data, as input.  The other received the 
processed CNT sensor data as input.  The GRU cells are bidirectional, i.e., the data sequence is 
read into the cell in both forward and reverse order.  The output of the GRU cells were combined 
and then passed into a fully connected neural network.  The model was trained using the Adam 
optimizer with the mean squared logarithmic error (MSLE) as the loss function. The model was 
trained utilizing 33% cross-validation, and early stopping was used to reduce the training time.  
Dropout regularization was employed to mitigate overfitting. 
 
 
 
 
 
 
 
 

60 Time Step window X 16 Channels + RH + P à 
~13,000 (60 x 18) time windows across all samples 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Keras code for the bidirectional neural network model.  The model takes in two 
tensors: a 60 x 16 tensor composed of raw signal data and a 60 x 18 tensor composed of 
processed data.  The inputs are passed first into separate GRU cells and then fed into the fully 
connected layers.  The output is the prediction of CO2 and NH3 concentration sensed. 
 
Results:  The trained model produced a MSLE loss of 0.026 when evaluated against the test set. 
The calculated loss is a reflection of how close the predicted values are to the actual values.  So 
small loss values are better than large ones.  Plots of ground truth values, which are the actual 
gas concentration measured independently by a metal oxide gas sensor, versus the values 
predicted by the CNT gas sensor for CO2 and NH3 concentrations (Figure 3) confirmed that the 
model performed well at determining the gas concentrations.  Therefore, a GRU cell is capable 
of learning complex sequential patterns such as those produced from a chemical sensor.  The 
addition of bidirectionality to the model may also allow it to capture any hysteresis or lag in the 
adsorption and desorption of gas from the surface of the CNT that might be reflected in the 
resistance measurement. Two GRU cells, one fed with scaled raw data and the other with 
processed data, were observed to perform better at predicting the gas concentration than one. The 
two-GRU-cell approach was chosen because models using only one GRU fed with only 
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processed data tended to predict negative gas concentrations (which has no physical meaning), 
while those fed with only scaled raw data could not predict gas concentrations at all.  Finally, the 
details of the methodology and results can be found in Ref. 2. 
 
 

 
Figure 3a 
 

 
Figure 3b 
Figure (3a): Plot of ground truth versus predicted NH3 gas concentration evaluated using the test data 
set. Figure (3b): Plot of ground truth versus predicted CO2 gas concentration evaluated using the test 
data set.  Blue dots: concentration predicted by the CNT sensor at the concentration stated on the x-
axis. Red line: concentrations if perfectly predicted.   



   

Conclusion: A trained neural network model may be an effective method for converting CNT 
sensor signals to actual human interpretable gas concentrations.  The next steps for this project 
are to collect vastly more gas sensor data (~1000 hours), retrain the model with this new data, 
and add other gases of interest, such as chlorine, in crew cabin air quality monitoring.  Once this 
final step is completed, real-world testing in the ISS environment can begin.  
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